skip to main content


Search for: All records

Creators/Authors contains: "Bao, Yuyan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Graph-based intermediate representations (IRs) are widely used for powerful compiler optimizations, either interprocedurally in pure functional languages, or intraprocedurally in imperative languages. Yet so far, no suitable graph IR exists for aggressive global optimizations in languages with both effects and higher-order functions: aliasing and indirect control transfers make it difficult to maintain sufficiently granular dependency information for optimizations to be effective. To close this long-standing gap, we propose a novel typed graph IR combining a notion of reachability types with an expressive effect system to compute precise and granular effect dependencies at an affordable cost while supporting local reasoning and separate compilation. Our high-level graph IR imposes lexical structure to represent structured control flow and nesting, enabling aggressive and yet inexpensive code motion and other optimizations for impure higher-order programs. We formalize the new graph IR based on a λ-calculus with a reachability type-and-effect system along with a specification of various optimizations. We present performance case studies for tensor loop fusion, CUDA kernel fusion, symbolic execution of LLVM IR, and SQL query compilation in the Scala LMS compiler framework using the new graph IR. We observe significant speedups of up to 21x.

     
    more » « less
    Free, publicly-accessible full text available October 16, 2024
  2. null (Ed.)
    Ownership type systems, based on the idea of enforcing unique access paths, have been primarily focused on objects and top-level classes. However, existing models do not as readily reflect the finer aspects of nested lexical scopes, capturing, or escaping closures in higher-order functional programming patterns, which are increasingly adopted even in mainstream object-oriented languages. We present a new type system, λ * , which enables expressive ownership-style reasoning across higher-order functions. It tracks sharing and separation through reachability sets, and layers additional mechanisms for selectively enforcing uniqueness on top of it. Based on reachability sets, we extend the type system with an expressive flow-sensitive effect system, which enables flavors of move semantics and ownership transfer. In addition, we present several case studies and extensions, including applications to capabilities for algebraic effects, one-shot continuations, and safe parallelization. 
    more » « less